일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- BERT
- TFX
- ResNet
- 경사하강법
- MLOps
- Generative model
- Ann
- LSTM
- Attention
- Gradient Descent
- RNN
- VGGNet
- NER
- textmining
- Support Vector Machine
- stemming
- SOMs
- tensorflow
- 자기조직화지도
- Transfer Learning
- AI 윤리
- gaze estimation
- 군집화
- Binary classification
- Clustering
- cross domain
- Logistic Regression
- nlp
- NMF
- Python
- Today
- Total
juooo1117
[Module 6] Deep Learning: Deep Neural Networks 본문
[Module 6] Deep Learning: Deep Neural Networks
Hyo__ni 2024. 1. 12. 10:37Part 1. Introduction to Deep Neural Networks
Deep Learning : Deep learning refers to artificial neural networks that are composed of many layers.
심층신경망(DNN)을 이용해서 고수준의 인공지능 task를 수행할 수 있도록 한다.
Perceptron and Neural Networks
Perceptron : one kind of neural network, similar with structure of a neuron
Decision Boundary in Perceptron
→ 입력으로 주어지는 좌표 공간(input feature space)은 decision boundary 에 의해서 양분되고, 그 중 한 쪽은 최종 output이 1이고 나머지 한 쪽은 최종 output이 0인 결과가 나온다.
하지만, it is impossible to solve a XOR problem using a single layer perceptron. Single layer perceptron can only solve linear problem, XOR problem is non-linear.
Multi-layer Perceptron
But if we use two-layer perceptron, we can solve XOR problem → this model is called multi-layer perceptron.
각 layer별로 많은 뉴런들을 구성해서 복잡한 패턴을 가진 task도 잘 학습시킬 수 있도록 한다.
Forward Propagation
𝑎 : activation function (*아래첨자: layer, 위첨자: layer 내의 몇 번째 node 인지?)
Softmax Layer
Because of sigmoid outputs, Prediction ∈ (0,1) & Target ∈ (0,1) → Upper limits exist on loss and gradient magnitude with MSE Loss
In addition, a better output would be a sum-to-one probability vector over multiple possible classes. (확률값의 총합이 1이 되는 output vector를 얻는 것이 더 바람직할 것!) → Softmax Layer for multi-class classification
Logistic regression
Softmax classifier whose logit for a negative class is set as a constant value of 0.
- Logistic regression is used for a binary classification.
- The softmax classifier can also be used for two classes by using the matrix 𝑊 with two columns, i.e., using the twice the number of parameters of a logistic regression.
Binary cross-entropy (BCE) loss for logistic regression is defined as,
'Artificial Intelligence > LG Aimers: AI전문가과정' 카테고리의 다른 글
[Module 6] Deep Learning: CNN and Image Classification (0) | 2024.01.12 |
---|---|
[Module 6] Deep Learning: Training Neural Networks (0) | 2024.01.12 |
[Module 4] Supervised Learning: Ensemble (0) | 2024.01.11 |
[Module 4] Supervised Learning: Advanced Classification (2) | 2024.01.11 |
[Module 4] Supervised Learning: Linear Classification (0) | 2024.01.10 |